Mechanical Monsters

Thomas J. Bergin
© Computing History Museum
American University

Four Basic Lines

- Konrad Zuse, mechanical, electrical relays
- George Stibitz, electrical relays
- Howard Aiken, mechanical
- IBM, mechanical, electrical relays

Konrad Zuse (1910-1995)

- First person to construct an automatically controlled calculating machine
- born in Berlin, Germany

1910

- Techniche Hochschule Berlin-Charlottenburg: civil engineering
- designed a series of special forms to systematize mathematical calculations

First thoughts of a "lazy" man

- Next step: design a machine capable of taking numbers (on punched cards) and moving them (like a crane in an arcade) to the appropriate places in his calculation diagram
- Insight: that once you had the instructions coded for the control mechanism, you didn't need the form; all you needed was a memory

Figure 1. Graphic representation of the algebraic formula $2(a b+c d)$ (Zuse 1970, p. 36).

From ideas to action

- Plan for a calculator which would need 1934 a control, a memory, and an arithmetic unit.
- Applies for a (German) patent

1936

- Constructs the Z 1 in his parents

1938 living room in Berlin

- Completes the Z2 machine

1939

- Completes the Z3: the world's first fully automatic calculating machine 7/9/2012

Dec.5, 1941

Inspiration

- 3 fundamental decisions:
- overall plan: program unit, calculating unit, memory, and input by punched tape
- binary system
- symbolic notation: Plan Calcul which is considered the world's first programming language

Versuchsmodell-1 Protototype)

- Mechanical memory capable of storing 1937 16 binary numbers of 24 bits each
- mechanical gate of sliding metal plates
- Calculating unit used discarded telephone relays at
- suggested by Helmut Schreyer, who also suggested the use of vacuum tubes (not accepted!)
- Control was by hand-punched (35mm) movie film
- Note: Schreyer had worked as a movie projectionist during his student days: movie projector had a mechanism to advance the film in discrete steps!

Mechanical memory (metal plates)

Z1 Relay Machine 1938

Z2 1939

- Schreyer builds a vacuum tube model, but their inability to get large number of vacuum tubes
(valves in UK) forces them to use telephone relays
- Zuse is drafted into the German Army; Schreyer continues to experiment with electronic analogs of Zuse's designs, including neon lamps driven by vacuum tubes (destroyed in an air raid)
- Zuse demonstrates the Z2 for the Deutche Versuchanstalt fur Luftfarht (German Aeronautical Research Institute); they agree to finance the $\mathrm{Z}-3$!

Zuse's Z-3

- First fully operational calculating machine with automatic control of it's operations.
- Electromagnetic relays:
- 1400 memory
- 600 arithmetic
- 600 miscellaneous functions 2600 total
also 20 step switches

Relay of the type used in the Z 3

$\operatorname{Relay}($ from Ceruzzi)

- Electromagnetic switch
- used in telephone switching systems, elevators, automobiles, etc.

ELECTROMAGNETIC RELAY

Relay(from Ceruzzi)

ELECTROMAGNETIC RELAY

Z3 Architecture

- Number system
- Word length
pure binary, floating point
22 bits: sign 1 bit exponent 7 bits mantissa 14 bits
- Memory capacity 64 words, random access
- Input/Output
- Clock variable, about 4-5 cycles/sec

Z3 History

- Years of operation 1941-1944
- destroyed in bombing raid
- reconstructed 1961-1963 (from original plans)
- Cost \$6,500 (25,000 RM)
- Speed 3 or 4 additions per second

3-5 seconds per multiplication

- Programming

Reconstruction 1960

Addierwerk dur Z3

Zuse's Z4

- Construction began 1942
- Word length 32 bits
- Mechanical memory 1000 words
- In 1950, after additions, machine sent to Federal Polytechnic Institute in Zurich
- Contained a lookahead feature read three instructions ahead with 3 options for execution
- In use at ETH until 1955; FARI until 1960

Rechner du Z4

Zuse AG

A DATACOM PIONEER DIES

- On Tuesday, January 31, 1995, George Robert Stibitz, a Bell Labs engineer who is believed to have accomplished the world's first remote computing process, died at the age of 90 at his home in Hanover, New Hampshire.
- In 1937, Stibitz cobbled together a primitive binary adder from dry cell batteries, metal strips from a tobacco can and flashlight bulbs in an arrangement with two telephone relays to accomplish simple arithmetic from inputs sent down a Baudot teletype circuit
- source: e-mail to History of Technology list, 2/11/95 7/9/2012

George Stibitz

- Kitchen or K-1 Computer

- Complex Number Calculator January 1940
- Samuel B. Williams, engineer
- American Mathematical Association Meeting at Dartmout College in Hanover, N.H. September 11, 1940
attendees sent mathematical problems to Bell Laboratories ir New York via telephone lines, using a Teletype
- attendees: John von Neumann, John Mauchly, and Norbert Weiner (among others)

Complex Number Calculator

- Technology: 450 relays, 10 crossbar switches
- 6-8 panels (approx. 8' x 5' x 1')
- Arithmetic: 8-digit precision
- range ± 0.99999999
- binary-coded-decimal, excess three code:

- 0	0011	5	1000
- 1	0100	6	1001
- 2	0101	7	1010
- 3	0110	8	1011
- 4	0111	0	1100

Relay Interpolator, September 1943

Decimal digit
0
1
2
3
4
5
6
7
8

7/9/2012

Bi-quinary code
0100001
0100010
0100100
0101000
0110000
1000001
1000010
1000100
1001000
1010000

Binary
0000
0001
0010
0011
0100
0101
0110
0111
1000
1001

Bell Laboratories Machines

- Bell Labs Model III June 1944
- Ballistic Computer for Army (ARL) at APG - AKA Aberdeen Machines
- Bell Labs Model IV

March 1945

- Error Detector Mark 22 (Naval Research Labs, DC)
- Bell Labs Model V

June 1946

- CADET = cant add, doesn't even try!
- No arithmetic circuitry; used an addition table
- Multiplication by repeated addition
- Bell Labs Model VI

Bell Model III Arithmetic Unit

Characteristics

Model II III

Date
19431944
$\begin{array}{lllll}\text { Relays } & 440 & 1400 & 1425 & 9000+\end{array}$
Memory 7 Multiply $4 \mathrm{sec} 1 \mathrm{sec} \quad 1 \mathrm{sec}$ Cost $\quad \$ 20 \mathrm{~K} \quad \$ 65 \mathrm{~K} \quad \$ 65 \mathrm{~K} \quad \$ 500 \mathrm{~K}$ Panels 20505 (10 tons)

1945
1946\&7
IV V

1030
$1 \mathrm{sec} \quad 0.8 \mathrm{sec}$

Babbage's Dream come true

- Howard Aiken, Instructor, Graduate School of Engineering, Harvard University
- Influences:
- Watson Astronomical Computing Bureau at Columbia University (EAM)
- Babbage, Passages in the Life of a Philosopher
- Approached Thomas J. Watson of IBM
- design and construction began 1939 at IBM, in Endicott, N.Y. (as a goodwill project)
- B.M. Durfee, F.E. Hamilton, C.D. Lake 7/920072 additional funding by the U.S. Navy

Howard Hathaway Aiken (1900-1973)

Harvard Mark I

- IBM Automatic Sequence Controlled Calculator
- Operational at Harvard in May 1944
- Dedication: Aiken took all the credit!
- Design: used 72 standard IBM mechanical accounting machine registers (each of which was a self-contained adding mechanism)
- Control: 24-channel paper tape reader
- Constant registers (60): manual switches
- 3 paper tape readers for tabular data, punched card formata input, electric typewriter for output

Mark I Clutch Mechanism

A: "piack-up" relily. enxiapes wheed
B: "drop-off' refily; diwngages the :Julth

F): motor armi mikev, a corncetion with tue cwatacte along Ine whed

Mark I Mechanical Drive

24-channel paper tape reader (Smithsonian photo)

- Basic cycle time: given the 200 rpm rotation of the main shaft, elementary operations such as adding, subtracting or clearing a register was about 0.3 seconds

- Size: 51 feet long, 8 feet high

- Parts: 750,000
- switches, relays, decade switches, registers (EAM) - $\mathbf{5 0 0}$ miles of wire
- Special units: multiplication, division, $\sin (x), 10^{\mathrm{X}}$, and $\log (x)$ [cycle times > 60 seconds]
- चpablldiplied by partial products, a la Napier's Bones. 41

- Control: 24 channel paper tape

- three 8 channel groups: (two address machine): out-field in-field misc. or op-field

876543218765432187654321
Take the contents of Unit 5, add it to the contents of Unit 6, and go to the next instruction

- Subsidiary Sequence Mechanism was a large series of plug-board panels which allowed up to ten often used subroutines to be plug-wired into the machine

Later developments....

- Mark II operational........................July 1947
- Naval Proving Ground, Dahlgren, VA
- 13,000 specially designed electromagnetic relays
- six pole, double throw contacts
- latching relays
- multiple arithmetic units
- addition: 125 milliseconds
- multiplication: 750 ms
- Mark III
- Naval Proving Ground, Dahlgren, VA March 1950
- Internally stored program
- 8 magnetic drums for data; used paging
- 1 magnetic drum for (4000) instructions
- internal storage for 4,350 16-bit numbers
- address modification
- indirect addressing of instructions
- Mark IV

1952

- ferrite magnetic cores to construct 200 registers
- United States Air Force

Legacy

- Lt. Grace Murray Hopper, USN

- third programmer on the Mark I
- active in COBOL and early language developments

Rear Admiral Grace Brewster Murray Hopper, first lady of software and first mother-teacher of all computer programmers, died in her sleep in her Arlington , VA. Home on January 1, 1992. She was 85.

- J.A.N. Lee, Computer Pioneers, MIT Press, p. 382
- Herbert R.J. Grosch (oldest living programmer)
- After Mark IV, Aiken retired from designing computers and concentrated on training the second generation of computer scientists (many of whom made significant contributions to the mini-computer induwstory around Boston's Route 123 in the 1960s and 1970s)

Grace Murray Hopper (1906-1992)

92
9/9

conct $2.1306764{ }^{2}$
Reys 6-2 033 faled spuid spod test in Tuiar inun test.
1100 Started Cosine Tape (Sine check)
1525 Staviad Multy Adder lest.
1545
Relay *70 Panel F (moth) in relay.

First actaal case of buy being found.
 1700 Clast dome.

IBM Punched Card Advances

- 601 Multiplying Punch
- 604 Multiplying Punch
- 1400 electronic tubes
- 8 internal registers used in pairs (8 decimal digits)
-2 large plugboard panels
- read a card, perform up to 60 different arithmetic steps and punch the output by the time the card reached the punching station (in about 80 milliseconds)
- 5000 sold by 1958

IBM Calculators

- Automatic Sequence Controlled Calculator 1944
- aka Harvard Mark I (May 1944)
- Pluggable Sequence Relay Calculator 1944-45
- Aberdeen Proving Ground, Aberdeen, MD
- Naval Proving Ground, Dahlgren, VA
- T.J.Watson Scientific Computing Laboratory, Columbia University
- Card Programmed Calculator (CPC) 1948
- Northrup Aviation: 604 mult. punch \& 407 tabulator
- 700 sold

Automatic Sequence Controlled Calculator 1944 (IBM photo)

Automatic Sequence Controlled Calculator 1944 (IBM photo)

Selective Sequence Electronic Calculator (January 1948)

- 13,000 vacuum tubes in arithmetic unit and 8 highspeed registers (binary coded decimal: 8:4:2:1)
- addition: 0.004 seconds
- 23,000 relays in the control structure and 150 slower-speed registers
- instructions via paper tape (66 paper tape readers)
- 1st machine used in a service bureau

Selective Sequence Electronic Calculator (IBM Photo)

Selective Sequence Electronic Calculator (IBM Photo)

References

- Paul E. Ceruzzi, "Electronic Calculators," in Aspray, Computing Before Computers, Iowa State University Press, 1990
- Paul E. Ceruzzi, Reckoners: The Prehistory of the Digital Computer, from Relays to the Stored Program Concept, 1935-1945, Greenwood Press, 1983
- Brian Randell, The Origins of Digital Computers: Selected Papers, Springer, 1982

Additional References

- Stibitz, "Automatic Computing Machinery," in Randell, Origins...., (essay written in 1940)
- Stibitz, "Automatic Computing Machinery," in Annals, 4/ 2 (April 1982) 1947 and 1950 memos
- Stibitz, "Early Computers," in N. Metropolis, A History of Computing in the Twentieth Century, Academic Press, 1980
- Charles J. Bashe, et al, IBM's Early Computers, MIT Press, 1986
- J.A.N. Lee, Computer Pioneers, IEEE Press, 1995

Web sources

- Mechanical Monsters References
- www.arithmeum.de
- www.hnf.de/museum
- http://irb.cs.tu-berlin.de/~zuse/Konrad_Zuse

Biographies

- Konrad Zuse, The Computer, My Life,
- I. Bernard Cohen, Howard Aiken: Portrait of a Computer Pioneer, MIT Press, 1999
- Charlene W. Billings, Grace Hopper, Navy Admiral \& Computer Pioneer, Enslow Publishers, 1989.
- Herbert R. J. Grosch, Computer: Bit Slices From a Life, Third Millennium Books, 1991

Show and Tell

- K-1 Computer model: Raymon Richardson
- Letter and diagrams from Zuse's son
- Stibitz and Laravee, Mathematics and Computers, McGraw-Hill, 1957
- IBM, SSEC brochure
- IBM drum memory and read head
- Ferrite Magnetic cores
- IBM CPC plugboard
- ERA, High Speed Computing Devices, 1950

